
Transparently managing time varying conditions and detector data on ATLAS

C. Leggett, LBNL, Berkeley, CA 94720, USA

Abstract

It is essential to provide users transparent access to time
varying data, such as detector misalignments, calibration
parameters and the like. This data should be automatically
updated, without user intervention, whenever it changes.
Furthermore, the user should be able to be notified when-
ever a particular datum is updated, so as to perform ac-
tions such as re-caching of compound results, or perform-
ing computationally intensive task only when necessary.
The user should only have to select a particular calibra-
tion scheme or time interval, without having to worry about
explicitly updating data on an event by event basis. In or-
der to minimize database activity, it is important that the
system only manage the parameters that are actively used
in a particular job, making updates only on demand. For
certain situations however, such as testbeam environments,
pre-caching of data is essential, so the system must also be
able to pre-load all relevant data at the start of a run, and
avoid further updates to the data.

We present the scheme for managing time varying data
and their associated intervals of validity, as used in the
Athena framework on ATLAS, which features automatic
updating of conditions data occurring invisibly to the user;
automatic and explicit registration of objects of inter-
est; callback function hierarchies; and abstract conditions
database interfaces.

REQUIREMENTS

Online and offline requirements demand considerably
different operation modes for conditions database access.
In the online environment, calibration constants and other
time dependent data are usually preloaded at the beginning
of a run, and remain fixed for the duration of the run, in
order to minimize lengthy database access. This type of
access pattern is simple to model, and makes the loading
of constants fairly easy. In the offline world, users access
data in a much more random manner, selecting events from
many different runs, which may use very different calibra-
tions. The user should not have to concern himself with
making sure that the time dependent data is up to date,
rather this should be handled automatically by the frame-
work.

In certain situation, the user does need to know when
time dependent data has changed, such as when a sec-
ondary value uses the time dependent data in a computa-
tionally expensive function, and wants to cache the func-
tion result. The function must be recomputed when the data

changes. This can be accomplished with the use of callback
functions that are triggered at the appropriate time. Further-
more, dependency trees are needed, as one function’s result
may depend on that of another.

Conditions databases can contain thousands if not mil-
lions of time ordered data. It would be grossly inefficient
to monitor all of them for changes. Instead, the user must
notify the framework which are the items of interest. This
is accomplished via a registration procedure. Furthermore,
even when time intervals are monitored, the actual data
need not be loaded from persistent form unless it is actu-
ally used. This can be done using proxies that use evalua-
tion upon demand.

A separate service, called the Interval of Validity Service
(IOVSvc), is used by the framework to manage all aspects
of the time dependent data registration, loading, and valid-
ity checks.

DATA REGISTRATION

There are two distinct methods of making the IOVSvc
aware of which time dependent data it should manage:
� registering a DataHandle

�������	��

and its correspond-

ing database identifier
�����
�

:
�������������������! �"���#�$&%���$������'��������(*)��'��������+

 �"��#�$&#'$,��-'����(*��.,/���01�2
� registering a DataHandle and an associated callback

function against a database identifier:
3'46567�8:9�;=<6>'?6>6@�ACB'DCE'4F;HG�IJILKCM�8:9�N�;:OQPQR�<CR�B'S6B6TJUJUJVJT'B6W�SCT6X�Y'<�N�Z

86DQ9�AQ>[G�K\M�8:9�PQ]�^�Z_86DQ9�AQ>a`�?6>'?Cb�?C9'E�c646dae�?C9'E�c64�Z
86DQ9�AQ>fAQ>J3,gh9'5JdaE6]'W'46i	Zj]�DJDJck>J3,g!5J5'463JlJM'?'c'AC4�N�m

Here, the callback function is identified by its signa-
ture, and a pointer to it. The final optional boolean
argument, if set n�o�p
 , will cause the function to be
immediately triggered as soon as it is registered. This
is to account for those rare cases when the registration
is performed during the middle of a run, instead of at
initialization time.

During the registration procedure, the data store asso-
ciates a proxy with the DataHandle or callback function,
by which means its access to the persistent store is con-
trolled. Proxies are used as the basis, as they are unique,
and easily identifiable.

Instead of registering a DataHandle against a database
key, a DataHandle can be registered against a previously
registered DataHandle. Likewise, a callback function can
be registered against a previously registered callback func-
tion, allowing a chain of functions to be built up:

3'46567�8:9�;=<6>'?6>6@�ACB'DCE'4&;HG�IJILKCM�8:9�qJN�;:OQPQR�<CR�B'S6B6TJUJU'VJT'BJW�SCT6X�Y'<�N�Z
86DQ9�AQ>aG�KaDQ]�^�q�Z
<6>'?6>6@�ACB'DCE'4*;HG�IJILKCM�8:9�r�N�;:OQPQR�<CR�B'S6B6TJUJU'VJT'BJW�SCT6X�Y'<�N�Z
86DQ9�AQ>aG�KaDQ]�^Jr�Zs]�DJDJc\>J3,g!5J5'463JlJM'?'c'AC4�N�m

Furthermore, a callback function can be registered
against multiple DataHandles or other callback functions,
such that the dependency tree grows in the form of an
acyclic graph (see Fig.1). When the callback functions are
triggered, the graph is walked from top to bottom, with
functions on each level of the graph being called in the
proper order.

C
allback Functions

Proxies

Figure 1: A hierarchical function callback graph.

LAZY DELEGATION BY PROXIES

Accessing data in the Athena framework is accom-
plished via proxies managed by StoreGate [1], the ATLAS
data store. Once the framework has been made aware of
which proxies are associated with time dependent data via
the registration procedure, it will wait until the data is used
before accessing persistent stores. This is accomplished via
the overloading of the dereferencing operator. A DataHan-
dle that is registered with the IOVSvc behaves slightly dif-
ferently than a normal DataHandle - instead of being reset
at the end of each event, the IOVSvc manages its storage
lifetime policy.

The first time the DataHandle is dereference, the IOVSvc
uses the current time information to read both the appropri-
ate validity information, and a reference to the actual loca-
tion of the data from a conditions database. The proxy asso-
ciated with the DataHandle is configured to use the correct
location of the persistent data, and the validity information
is loaded into the IOVSvc. The proxy then reads in the data
from its persistent form, and caches it in the DataHandle.
If any callback function is associated with the DataHandle,
it is subsequently triggered.

At every subsequent DataHandle access, so long as the
DataHandle is in a valid state, the cached data is returned,
with no further access to the persistent store.

FUNCTION CALLBACKS

One of the requirements that the database group had
given us, was that the callback functions should not be re-
quired to inherit from a specific callback base class. This
made the handling of the callback functions much more
challenging, as in C++ there is no easy way to identify
functions in a generic manner. We were permitted to spec-
ify the function arguments, which was defined in a macro
for easy use by users to IOVSVC CALLBACK ARGS.
The ultimate solution was to use Boost::bind and C++
trickery. In order to uniquely identify a callback function,
we used the address of the function, but it is difficult to ex-
tract this information. C++ does not provide any way to
copy the address into a variable, but it will allow you to
print it out, so the following scheme can be used:

tQu=v!w6x!yztQu!{ht:|zwCu=}6y=vCu�~Q�
�Q�:�z��� y!x!xh�Qy:�=�6�H���!���huht,���ztQyhth�6� �:�!� u_��~��!���H�:w �h�6� ���z�z�Q�z� �:�h�!�!�:� � �!�h�C�h�h�:� � �'�� � }6�=tj~_� �= 6¡Q�£¢w �:�= C¡¥¤ � �Q�:�z� � �£�= C¡�¦
�H§6yz¨©�!�=t:¨ ¤ }6uzª©�H§Cyh¨�«¬h® ¦�HwQ¨ � }:t!¯��°�=t!¨ �²±H³!´J±6� �!w �h�6��¦v �:� ¯!¯C�huht ¤ �=t:¨!t � x��L�=t!¨ �µ!¶Q�!���L·h¸Q�'¦
¹!¹ vCyz�Qujy!x!x � ªCy=}6�hu:�£¯ � ¨ � yh¨ �h� �6� � uz¨C� �!� }6� � ¯©ºQ�!�» � ¯k� �!�!�hµh¶Q�:�:� {j¼ �v �!� ¯:¯C�huzt ¹ ¤s½!´C·=½:½!½!½�¦» uz} �Q� ¯
� u:x!uztQuj�zt!¨ ¦
�=t � �!� � �zt!¨ � }QºC�=t!¨Qu!yzv � �=t ¦� �zt©{!{j�zt � �!�¾§6u ´ {!{ ± « ½!´J± {!{¿� � }:t � w �:�= C¡ {!{ ± ®!À ± {:{£v �!� ¯!¯C�huzt ¦
v �:�= C¡zµ yzvCu ¤ �!|Q�=tQu=v�!�Át:|zw6u � }:¯ �hµ y=vCu���t:|zwCu �h� �°� �= 6¡Q�!�'¦v � }Cy=vCu ¤ v �!�= 6¡zµ y=vCusÀ � �=t�Â��=t!¨,� ��¦

Ã

The variable ÄÆÅ ��� Ä
 contains information such asÇ�È o	É
	���ËÊ!ÌÍ�ÎÏ�Ï�Ð�Ñ�Ò�Ó , which is sufficient to uniquely iden-
tify any function, and is parseable by humans to facilitate
debugging.

The macro Ô�Õ�Ö�×Ö	É�Å�É È	Ç�ÇØ�È É � Å ÈÙ	Ú × expands into a
list of strings, which provides the keys of the conditions
database entries which have changed.

INTERVAL MANAGEMENT

The IOVSvc stores validity information in multiple
sorted Û,n �ÝÜ�Ü Ä�p � n�Þ�Û
 nßÛ , one set for each time boundary
(start of validity range / end of range), and time format
(run/event, timestamp, etc). These sets are ordered by in-
creasing or decreasing time, depending on whether the set
corresponds to the start of the interval, or the end. All valid-
ity information is associated with individual data proxies,
which are unique.

At each time boundary, which is user selected at initial-
ization, the multisets are scanned for validity, comparing
them with the current time. Both ends of the validity in-
terval are checked. Invalid entries are removed from the
sets, and the scanning stops as soon as the first valid entry
is found. The sorting of the sets ensures that all subsequent

entries are valid. Entries that were marked as invalid are re-
set, causing the associated data proxy to be marked invalid
and reset, so that subsequent accesses to the corresponding
DataHandle will trigger the reloading of the validity inter-
vals, and access to the persistent store.

The IOVSvc can also manage the processing of events
that are temporally out of order.

JOB CONFIGURATION

During initialization, users can select when the valid-
ity ranges should be checked. Currently, the options are
to check the validity information at the beginning of each
event, the beginning of each run, or at the beginning of the
job. Since the selection is controlled by Incidents fired by
the framework, it is easy to expand this behavior to any
required time interval, such as once per hour, every ten
events, or every three runs.

In the online environment, it is often desired that
database access should be minimized, and calibration
constants be loaded once during initialization and never
changed. The IOVSvc also supports this mode of opera-
tion, and permits both validity ranges and the associated
conditions data to be preloaded at the start of the job. This
behavior can be tuned so that the constants are reloaded at
the start of a new run if so desired.

Currently, the IOVSvc is seeing use in the online and of-
fline environments, and has proved itself in the recent Com-
bined Test Beam run for the ATLAS experiment, during
both data taking, and for offline analysis.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Science,
High Energy Physics, U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

REFERENCES

[1] P. Calafiura, C. G. Leggett, D. R. Quarrie, H. Ma
and S. Rajagopalan, eConf C0303241 (2003) MOJT008
[arXiv:cs.se/0306089].

